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Abstract 
 
This paper investigates the relationship between inflation and inflation uncertainty for the period 
of 1979-2007 by using monthly data and applying M-GARCH-M models in the Iranian economy. 
The results of a two-step procedure such as Granger causality test which uses generated variables 
from the first stage as regressors in the second stage, suggests a positive relation between the 
mean and the variance of inflation. However, Pagan (1984) criticizes this two-step procedure for 
its misspecifications due to the use of generated variables from the first stage as regressors in the 
second stage. This paper uses the Full Information Maximum Likelihood (FIML) method to 
address this issue. The estimates we gathered with the new set of specifications suggest that 
inflation Granger-causes inflation uncertainty, supporting the Friedman–Ball hypothesis, that 
high inflation is associated with more variable inflation. 
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1. Introduction: 

The relationship between inflation and inflation uncertainty has been the matter of interest 

among economists in recent decades. As the impact of inflation and inflation uncertainty on 

growth and welfare are significant, determining the direction of the causality between inflation 

and inflation uncertainty can help the policy makers to make appropriate decisions. Friedman 

(1977) points out the potential of increased inflation to crate nominal uncertainty, which lowers 

welfare and output growth. Ball (1992) formalizes and supports Friedman’s hypothesis in a 

game theoretical framework. Cukierman and Meltzer (1986) and Cukierman (1992), on the 

other hand, argue that increases in inflation uncertainty raise the optimal inflation rate by 

increasing the incentive for the policy maker to create inflation surprises in a game theoretical 

framework.  

On the empirical side of the inflation uncertainty literature, the results are mixed (see e.g. 

Baillie et al., 1996; Grier and Perry, 1990, 1998, 2000; Davis and Kanago, 2000; Perry and Nas, 

2000; Fountas, 2001; Fountas, et. al. 2001; Bhar and Hamori, 2004; Kontonikas, 2004; 

Berument and Nargez Dincer, 2005; Conrad and Karanasos, 2005; Vale, 2005; Caporale and 

Kontonikas, 2006; Grier and Grier, 2006; Thornton, 2007; Heidari and Montakhab, 2008). 

Although most of the empirical studies use the GARCH type of specifications as their 

common method to assess the relationship between inflation and inflation uncertainty, some 

studies make use of a two-step procedure. For example, Grier and Perry (1998) estimate the 

conditional variance of inflation by GARCH and Component GARCH methods, and then 

perform the Granger causality tests between these generated conditional variance measures and 

inflation series. However, Pagan (1984) criticises two-step procedure for its misspecifications 

due to the use of generated variables from the first stage as regressors in the second stage. Pagan 

and Ullah (1988) suggest using the Full Information Maximum Likelihood (FIML) method to 

address this issue.     

This paper examines the relationship between inflation and inflation uncertainty in Iran for 

the period of 1979 to 2007 and FIML method of estimation. We use FIML method to estimate 

M-GARCH-M models to investigate the results of Granger causality tests. The estimates with 

the new set of specification confirm our results from Granger causality tests, supporting the 

Friedman-Ball hypothesis. 
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 The paper is organized as follows: In section 2 we introduce GARCH models and the use 

of conditional residual variances as parametric measures of uncertainty. Section 3 discusses the 

data. In section 4, the estimation results are presented and the conclusions are given in section 5. 

 

2. The Model 

Since the seminal of Engle (1982), traditional time series tools such as autoregressive 

moving average (ARMA) models (Box and Jenkins, 1970) for the mean have been extended to 

essentially analogous models for the variance. Autoregressive Conditional Heteroskedasticity 

(ARCH) models are now commonly used to describe and forecast changes in the volatility of 

financial and macroeconomic time series.   

Letting  be the depended variable,  be a vector of explanatory variables included in 

, while the conditional error variance, , is a function of lagged values of the squared 

forecast errors, the  order linear ARCH model can be formulated as follow: 

              ),(~| 2
1 tttt Ny εσθψ Χ−                                                                                           (1) 

            
2

1
2

110
2 ... −− +++= tptt εαεαασ ε  

            θε ttt y Χ−=  

            0,00 ≥iαα                                   pi ,....,2,1=  

Where the vector and the 's are parameters which should be estimated (Engle, 1983). 

 

2.1 The GARCH(1,1) Model: 

The GARCH specification, which is generally used for inflation and time-varying residual 

variance as a measure of inflation uncertainty, is as follows:   
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Where tπ is the inflation, tε is the residual of equation (2), tεσ 2 is the conditional variance 

of the residual term taken as inflation uncertainty at time t, and n is the lag length. Eq. (2) is an 
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autoregressive representation of inflation. equation (3) is a GARCH (1,1) representation of 

conditional variance. 

 

2.2 The GARCH-M Model:  

If the inflation uncertainty affects the inflation, tεσ 2
 , in the mean equation represents 

inflation uncertainty. If we introduce variance (or standard deviation) into the mean equation, 

we get the GARCH-in-Mean (GARCH-M) model (Engle, Lilien and Robins 1987). So the mean 

equation in a GARCH-M model can be formulated as: 

 λπββπ ++= ∑
=

−

n

i
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0 tt εσ ε +2                                                                                         (4) 
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Engle, Lilien and Robins (1987) extend the Engle's ARCH model to allow the conditional 

variance to be a determinant of the process. Although the GARCH-M model was firstly used for 

asset market, some studies about inflation uncertainty, have used GARCH-M model to examine 

the effect of inflation uncertainty on the level of inflation (see e.g. Grier and Perry, 2000; 

Berument and Yuksel, 2002).  

 

2.3 Distributional Assumption: 

To complete the model specification, we need an assumption about the conditional 

distribution of the error term . There are three assumptions commonly employed when 

working with ARCH models: normal (Gaussian) distribution, Student’s t-distribution, and the 

Generalized Error Distribution (GED). Given a distributional assumption, ARCH models are 

typically estimated by the method of maximum likelihood. 

 However, in practice, high frequency data, often exhibit fatter tailes than the standard 

normal, or Gaussian distribution. For capturing this effect, we can change our distributional 

assumption from normal to the Student’s t-distribution or the GED. 

For the Student’s t-distribution, the log-likelihood contributions are of the form: 

                                      (6)        
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Where the degree of freedom  controls the tail behavior. The t-distribution 

approaches the normal as  

For the GED, we have: 

                                             (7) 

Where the tail parameter . The GED is a normal distribution if , and fat-tailed if 

 

 

3. Data 

This paper uses the monthly consumer price index (CPI) as price measure. The monthly 

CPI data for Iranian economy has been taken from the Central Bank of Iran for the period of 

1979–2007. Inflation is the annualized  monthly difference of the log of the CPI 

1200)ln(ln 1 ×−= −ttt cpicpiπ (see, e.g. Asteriou, 2006). Figure (1) shows the inflation rate in the 

Iranian economy during 1988-2006. 

 
Figure (1): Inflation Rate in the Iranian Economy 
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As Figure 1 shows the Iranian economy has experienced high and volatile inflation rate 

during past decades. 

The summary statistics for the data is given in Table (1). The large value of the Jargue-  

Bera statistic implies a deviation from normality. 
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Table (1) 
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Series: P
Sample 1978M03 2007M02
Observations 347

Mean       17.22890
Median   16.78349
Maximum  83.84362
Minimum -67.15038
Std. Dev.   21.52174
Skewness  -0.031155
Kurtosis   4.585291

Jarque-Bera  36.39205
Probability  0.000000

 

3-1 Unit Root Test: 

In order to investigate the stationary of the data, the paper uses the Augmented Dickey-

Fuller (ADF), Philips-Perron (PP) and Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) tests. 

Table (2) shows the ADF, PP and KPSS tests results for the data. 

Table (2): ADF test, PP test and KPSS test result for the data 

 Include in test 
equation 

Statistic Critical values 
10% level 

Criticalvalues 
5% level 

Critical values 
1% level 

ADF Intercepet -2.805173* -2.571321 -2.869952 -3.449679 
trend and intercepet -2.828723 -3.134591 -3.423296 -3.985690 

none -1.049060 -1.616066 -1.941773 -2.571883 
PP Intercepet -12.121930* -2.571174 -2.869677 -3.449053 

trend and intercepet -12.09822*** -3.134337 -3.422865 -3.984804 
none -9.320797*** -1.616086 -1.941742 -2.571663 

KPSS Intercepet 0.168512*** 0.347000 0.463000 0.739000 
trend and intercepet 0.168056* 0.119000 0.146000 0.216000 

Note: * denotes significance at the 10 % level, 

         ** denotes significance at the 10%, 5 % level 

        *** denotes significance at the 10%, 5%, 1 % level. 

As can be seen from Table (2), the inflation rate is stationary. 

3-2 Test of Structural Breaks in the Mean of Iranian Inflation: 

To carry out a test of no structural break against an unknown number of breaks in the 

Iranian inflation, this paper uses the endogenously determined multiple break test developed by 
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Bai and Perrron (1998)1

m

. This method tests for the presence of breaks when neither the number 

nor the timing of breaks is known aprior. This approach allows us to test for the presence of  

breaks in the mean of inflation rate at unknown times using the following model: 

                           tjp ηµ +=∆                      jj TTt ,,11 += −                                            (8) 

                                                                    )1(,,2,1 += mj   

where p∆  is the inflation, jµ  is the regime-specific mean inflation rate, and tη  is an error 

term, and 00 =T  and TTm =+1 .  

Bai and Perron (1998) introduced two tests of the null hypothesis of no structural break 

against an unknown number of breaks given some upper bound (for most empirical applications 

this bound is 5, see, e.g., Bai and Perron, 2003). These tests are called Double Maximum tests 

( maxD ). The first is an equal weighted (we set all weights equal to unity) labeled by maxUD . 

The second test, maxWD , applies weights to the individual tests such that the marginal 

−p values are equal across the values of breaks. In both of these tests, break points are 

estimated by using the global minimization of the sum of squared residuals (for more details 

see, Bai and Perron, 1998 and 2003).  

Table (3) presents results of maxD  tests. These tests show that we have no break in the 

mean of the Iranian inflation. These results are strongly supported by the )(mSupFT  test 

introduced by Andrews (1993).  

 

Table (3). maxD  Tests 

Tests maxUD  maxWD  

Values 9009.4  9009.4  

 

4. Estimation 

                                                           
1 A GAUSS algorithm to carry out these tests can be downloaded freely from Pierre Perron’s homepage at 
http://econ.bu.edu/perron. 
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We find that the best fitting time series model for the Iranian inflation includes 1, 10, 11, 

12 of  its lages. The results from estimation of this model are as follow: (t-statistics are in 

paranthesses)  

 

tttttt επβπβπβπββπ +++++= −−−− 121211111010110                                                             (9) 

tttttt επππππ +++++= −−−− 1211101 283162.0137606.0117343.0256114.0645868.3      (10) 

           )35.2(      )20.5(          )42.2(        )65.2(       )61.5(  

In order to find out whether the residuals are serialy correlated, we use Breush-Godfrey 

Serial Correlation Lagrange Multiplier (LM) Test. 

Table (4): Breush-Godfrey Serial Correlation LM Test 

0.791966 Probability 0.466473 LM test 

 

The Table (4) shows that the test does not reject the hypothesis of no serial correlation and 

so indicate that the residuals are not serialy correlated. 

Also to test whether there are any remaining ARCH effects in the residuals, we use the 

LM test for ARCH in the residuals (see, e.g. Engle 1982). The results of the ARCH-LM test in 

Table (5) expreses that the hypothesis of no remaining ARCH effects in the residuals can not be 

rejected. Thus, there is ARCH effect in the residuals.  

Table (5): ARCH LM Test 

0.000012 Probability 22.63525 LM test 

 

The Breush-Godfrey Serial Correlation LM Test  rejects first through 12 order serial 

correlation at all standard significantce levels. However, the LM tests for ARCH reject the null 

of no first or eight order conditional heteroskedasticity of the 0.1 level of significant. Since 

higher order ARCH indicates persistence in the conditional variance, the model is estimated as a 

GARCH(1,1) process. This resultes are reported in Table (6). 
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Table (6): GARCH(1,1) model estimation results 

Mean equation 

Prob. z-Statistic Std.Error Coefficient  

0.0325 2.138777 1.465349 3.134056  

0.0001 4.019476 0.052090 0.209376  

0.0108 2.549781 0.040888 0.104256  

0.0042 2.866410 0.039487 0.113187  

0.0000 8.614101 0.038716 0.333505  

Variance equation 

0.0099 2.580034 4.912405 12.67417  

0.0000 4.181016 0.049547 0.207157  

0.0000 16.11583 0.047584 0.766851  

   

Our results show that In the mean and variance equation, all coefficients are highly 

significant 

If the residuals are normally distributed, the points in the QQ2F

1-plots  shoud lie alongside a 

straight line. The plot indicates that it is primarily large shocks that are driving the departure 

from normality. 
                Figure (2) Normal Quantil 
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If we plot the residuals against the quantiles of the t-distribution, the plot indicates that the 

points in the QQ-plots shoud lie alongside a straight lie thus the residuals are t-student 

distributed. 
t-distribution Figure (3) 
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When we estimate a GARCH(1,1) model, the standardized residual show evidence of 

excess kurtosis. To model the thick tail in the residuals, we assume that the errors follow a 

Student's t-distribution. Table (7) presents the results for the mean and the variance equations, 

followed by the results for t-student distributional parameter. 

 
model estimation with t-student distributional parameter     Table (7). GARCH (1,1) 

Mean equation 

Prob. z-Statistic Std.Error Coefficient  

0.0007 3.405881 1.323213 4.506706  

0.0000 4.672634 0.047630 0.222557  

0.0449 2.006040 0.041464 0.083179  

0.0070 2.694783 0.044536 0.120016  

0.0000 7.004528 0.041669 0.291869  

Variance equation 

0.1902 1.309953 3.787029 4.960831  

0.0041 2.873896 0.050096 0.143971  

0.0000 19.32557 0.044062 0.851519  

parameter t 

0.0145 2.443404 2.429264 5.935673 V 
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In the mean equation, all coefficients are highly significant. While, in the variance 

equation, all coefficients are highly significant, except the Constant term.  

To test whether there are remaining ARCH effects in the residuals, we use ARCH LM 

Test. Results reported in Table (8) show that there is little evidence of ARCH effect.   

  
Test LM Table (8). ARCH 

LM test Probability 

          1.675241           0.195558 

 

Table (9) shows the results of the mean and variance equation followed by the results for 

GED distribution parameter. 
Table (9). GARCH(1,1) wih GED parameter 

Mean equation 

Prob. z-Statistic Std.Error Coefficie

nt 

 

0.0003 3.619903 1.318692 4.773536  
0.0000 4.554778 0.047655 0.217059  
0.0574 1.899906 0.041045 0.77982  
0.0084 2.636946 0.042625 0.1124  
0.0000 7.070855 0.040901 0.289202  

Variance equation 

0.1088 1.603792 5.041049 8.84797  
0.0034 2.927826 0.053640 0.157050  
0.0000 15.73534 0.052424 0.824907  

parameter GED 

0.0000 8.518192 0.159530 1.358906 R 

    

Our estimate for the GED parameter is less than two (r=1.35). In order to test that the 

GED parameter is equal to two, we use Wald test. The result of this test in Table (10) shows that 

we can strongly reject the null hypothesis that the GED parameter is equal to two.  
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Table (10). Walt Test 

F-statistic Probability 

16.14948 0.0001 

 

With this result in hand, we can say that our conditional error distribution is fat-tailed. 

 

4.1 Granger Causality Tests: 

Table (11) reports the results of Granger causality tests between inflation and inflation 

uncertainty. 

Table (11). Granger Causality Tests 

Probability F-Statistic Null Hypothesis 

1.7E-06 13.8197 Inflation does not Granger 

Cause inflation uncertainty 

0.43878 0.82582 Inflation uncertainty does not 

Granger Cause inflation 

 

These results suggest that inflation Granger-causes inflation uncertainty, supporting the 

Friedman–Ball hypothesis, that high inflation is associated with more variable inflation. 

 

4.2          M-GARCH-M3F

1 Model:  

To carry out the results of the Granger causality tests in section 4-1, we use a two-step 

procedure. However, Pagan (1984) criticises two-step procedure for its misspecifications due to 

the use of generated variables from the first stage as regressors in the second stage. Pagan and 

Ullah (1988) suggest using the FIML method of estimation to address this issue. If the inflation 

affects the inflation uncertainty, then the inflation variable should be included in the GARCH 

specification in the first step. Similarly, if the inflation uncertainty affects the inflation, then the 

inflation uncertainty measure must be present in the first step of the inflation specification. 

Thus, the inflation and inflation uncertainty specifications should be estimated jointly as a one-

step procedure rather than a two-step procedure. In order to do this, we specify a M-GARCH-M 

model as follows: 

                                                           
1 Mean in GARCH and GARCH in Mean. 
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ttttttt επβπβπβπβλσβπ ε ++++++= −−−− 12121111101011
2

0                                                (11) 

6
2

12
2

110
2

−−− +++= tttt ρπσαεαασ εε                                                                                   (12) 

If the value of  in the equation (12)  shows that inflation uncertainty increases as 

inflation rises. A positive and significant  can be considered as confirmation of Friedman-Ball 

hypothesis and also means that inflation uncertainty is a cost of inflation. However,  in the 

equation (11) could be positive or negative. A positive  means that inflation uncertainty has a 

positive effect on the level of inflation, but a  negative  means that inflation uncertainty has a 

negative impact on the level of inflation which can be explained by the stabilization motive of 

policy makers. Nonetheless, it should be noted that although this approach provides some 

information about the impact of inflation on inflation uncertainty and vice versa, it can not be 

considered as the causality test between these two variables. 

The estimation result of the above M-GARCH-M model is presented in Table (12): 

 
Table (12). The estimation result of the M-GARCH-M (1,1) model 

Mean equation 

Prob. z-Statistic Std.Erro

r 

Coefficie

nt 

 

0.0000 4.062404 1.297657 5.271607  
0.4456 -

0.762707 

0.003372 - 

0.002572 
 

0.0000 4.495127 0.051140 0.229883  
0.0080 2.654135 0.035345 0.093811  
0.0312 2.153907 0.039160 0.084347  
0.0000 7.774592 0.035547 0.276364  

Variance equation 

0.0119 2.514259 17.61080 44.27812  
0.0025 3.027212 0.158077 0.478532  
0.0001 4.006979 0.094503 0.378673  
0.0003 3.646022 0.613592 2.237170  

parameter  t 

0.0285 2.190809 2.512449 5.504295 V 

  



14 
 

Our results show that in the mean and variance equations, all coefficients are highly 

significant.      

The results of Table (12) express that show the coefficient of lagged inflation in the 

variance equation is positive and significant. This confirms the Friedman-Ball hypothesis. 

However, the coefficient of conditional variance in the mean equation is negative but highly 

insignificant, which means that inflation uncertainty does not affect the level of inflation.  

To test whether there are remaining ARCH effects in the residuals, we use ARCH LM Test.   
Table (13). LM Test ARCH 

LM test Probability 

1.442918 0.229668 

 

The results of LM test in Table (13) shows that there is little evidence of remaining ARCH 

effect. 

Table (14) shows the results of the mean and variance equation followed by the results for 

GED distribution parameter. 
Table (14). M-GARCH-M (1,1) with GED parameter 

Mean equation 

Prob. z-Statistic Std.Error Coefficie

nt 

 

0.0206 2.315148 1.695396 3.925094  
0.8144 -

0.234815 

0.005017 -

0.001178 
 

0.0000 4.555698 0.049754 0.226664  
0.0014 3.193755 0.034532 0.110253  
0.0014 3.188071 0.037842 0.120643  
0.0000 8.230728 0.034657 0.285255  

Variance equation 

0.0040 2.877731 28.91771 83.21741  
0.0034 2.924684 0.143701 0.420280  
0.0235 2.264510 0.108755 0.246277  
0.0000 5.537758 0.431332 2.388611  

parameter GED 

0.0000 8.105813 0.166014 1.345681 r 
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Estimation of equations with GED distribution show that the GED parameter is less than 

two (r=1.54). In order to test that the GED parameter is equal to two, we use Wald test. The 

result of this test in Table (15) shows that we can strongly reject the null hypothesis that the 

GED parameter is equal to two.     
Table (15). Wald Test 

F-statistic Probability 

15.53419 0.0001 

  

With this result in hand, we can say that our conditional error distribution is fat-tailed. 

 

5. Conclusion: 

This paper investigates the relationship between inflation and inflation uncertainty for the 

period of 1979-2007 by using monthly data and applying M-GARCH-M models in the Iranian 

economy. The results of a two-step procedure such as Granger causality test which uses 

generated variables from the first stage as regressors in the second stage, suggests a positive 

relation between the mean and the variance of inflation. However, Pagan (1984) criticizes this 

two-step procedure for its misspecifications due to the use of generated variables from the first 

stage as regressors in the second stage. This paper uses the Full Information Maximum 

Likelihood (FIML) method to address this issue. If the inflation affects the inflation uncertainty, 

then the inflation variable should be included in the GARCH specification in the first step. 

Similarly, if the inflation uncertainty affects the inflation, then the inflation uncertainty measure 

must be present in the first step of the inflation specification. Thus, the inflation and inflation 

uncertainty specifications should be estimated jointly as a one-step procedure rather than a two-

step procedure. The estimates we gathered with the new set of specifications suggest that 

inflation Granger-causes inflation uncertainty, supporting the Friedman–Ball hypothesis, that 

high inflation is associated with more variable inflation. 
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